ICP: Density of Fluids

Objectives:

1. Learn how to find the density of liquids and use your understanding to make a density column.
2. Use a density column to predict the density of a solid.

Notes:

- A fluid is defined as any matter that is able to flow.

Density Column

Density

1. What is density?

Density is a \qquad of the amount of matter or \qquad that can fit in a given
\qquad . It is the ratio of a material's mass to its volume.

2. What is the formula for density?

3. What does density tell me about an object?

- Density is important because it affects whether objects will \qquad or \qquad .
- If density is less than $1.0 \mathrm{~g} / \mathrm{mL}$, the object \qquad in water.
- If density is more than $1.0 \mathrm{~g} / \mathrm{mL}$, the object \qquad in water.

4. Where would I see density in my everyday life?
\qquad - you want the balloon to get off the ground.

* \qquad - you don't want the ship to sink! People don't like to be on a sinking ship.
* \qquad - you don't want to overload the truck!
\qquad - you want to make sure you actually bought a gold necklace.

5. Density values chart

Object	Density Value $\left(\mathrm{g} / \mathrm{mL} \mathrm{or} \mathbf{~} / \mathrm{cm}^{\mathbf{3}}\right)$	Sinks or Floats in water?
Water $\left(4^{\circ} \mathrm{C}\right)$		
Ice water $\left(0^{\circ} \mathrm{C}\right)$		
Aluminum		
Silver (solid)		
Silver (liquid)		
Gold		
Iron		
Gasoline		
Baby Oil		

6. REMEMBER: the phase of matter depends on its \qquad . The \qquad the temperature, the farther the molecules are spread out and the faster they are moving. Therefore a \qquad of one material will be denser than a \qquad of the same material.
7. An exception to the rule is
\qquad . Solid
\square is less dense than liquid
\qquad . That is why \qquad floats in your drinks. molecules freeze into
\qquad crystals that form a pattern that has a lot of empty space. The molecules in liquid \qquad are more tightly packed. See the

Stable hydrogen bonds HEXAGONAL
 cubic illustration below.
8. Practice Problems
9. Clay Practice: A review of triple-beam balances and displacement method

Clay Mass (g)	Volume (mL)	Density (g/mL)	Density (g/mL) (rounded to nearest whole number)	Sinks or Floats?
10				
20				
30				

