Stoichiometry Test Practice

Practice Test 1

- 1. $2 C_6 H_{10} + 1 \rightarrow 0_2 \rightarrow 12 CO_2 + 10 H_2O$
 - a) If I do this reaction with 35 grams of C₆H₁₀ and 45 grams of oxygen, how many grams of carbon dioxide will be formed?

6) What is the limiting reagent (or part (a)?

- b.) What is the limiting reagent for part (a)? Oxygen

 c) If 35 grams of carbon dioxide are actually formed from the reaction in part (a), what is the percent yield of this reaction?

- Ethylene (C₂H₄) burns in oxygen to form carbon dioxide and water vapo
 - a) Write the balanced chemical equation for this reaction below.

b) How many liters of water can be formed if 1.25 liters of ethylene are consumed in this reaction?

3. a) Balance the following equation:

$$\underline{\qquad} Pb(SO_4)_2 + \underline{\mathcal{U}} LiNO_3 \rightarrow \underline{\qquad} Pb(NO_3)_4 + \underline{\mathcal{L}} Li_2SO_4$$

b) How many moles of lithium nitrate will be needed to make 40 moles of lithium sulfate, assuming that you have an adequate amount of lead (IV) sulfate to do the reaction?

$$\frac{40 \text{ moles } \text{Li}_2 \text{ SOy}}{1} \times \frac{4 \text{ moles } \text{Li}_1 \text{NO}_3}{2 \text{ moles } \text{Li}_2 \text{ SO}_4} = 80 \text{ moles } \text{Li}_1 \text{NO}_3$$
How many moles of lead(IV) nitrate are produced if 25 moles of lithium sulfate are produced?

d) How many moles of lithium nitrate are needed to react completely with 5.9 moles of lead(IV) sulfate?

4. a) Write the balanced equation for the reaction of acetic acid with aluminum hydroxide to form wa	ater and Key	1
aluminum acetate: $3C_2H_3O_2H + AL(OH)_3 - AL(C_2H_3O_2)_3 + 3H_2O_2$ b) Using the equation from part (a), determine the mass of aluminum acetate that can be made if reaction with 125 grams of acetic acid and 275 grams of aluminum hydroxide.		
125 g C2 H3O2H × 1 mole C2 H3O2H × 1 mole 40 (C2 H3O2)3 × 204.13 (b0.06 g C2 H3O2H × 3 moles C2 H3O2H × 1 mol Al(C2 275 g Al (OH)3 × 1 mole Al (OH)3 × 1 mole Al (C2 H3O2)3 × 204.13 q Al(C2 H3O2)3 78.01 g Al (OH)3 × 1 mole Al (OH)3 × 1 moles C2 H3O2H × 10 moles C2 H3O2H	4 14	
$\underline{\qquad} Mg + \underline{\qquad} HNO_3 \rightarrow \underline{\qquad} Mg(NO_3)_2 + \underline{\qquad} H_2$		
Type of reaction: Single replacement		
b) If I start this reaction with 40 grams of magnesium and an excess of nitric acid, how many grams gas will I produce?	of hydrogen	
theoretical yield \(\text{\text{1 mole Ma}} \text{\text{\text{1 mol H2}}} \text{\text{\text{2.02 g H2}}} = 3.32 g H2 \[\text{\text{1 mole Ma}} \times \frac{\text{1 mol H2}}{\text{1 mol H2}} \times \frac{\text{2.02 g H2}}{\text{1 mol H2}} = 3.32 g H2 \[\text{c) If 1.7 grams of hydrogen is actually produced, what was my percent yield of hydrogen?} \] \[\text{\text{\text{actual yield}}} \text{\text{\text{1.74}}} \text{\text{\text{1.74}}} \text{\text{\text{3.32 q}}} \text{\text{\text{100°}/6}} = 51.	20%	
J		
Practice Test 2 6. a) Balance this equation and state what type of reaction is taking place:		
Type of reaction: Decomposition		
b) If 25 grams of carbon dioxide gas is produced in this reaction, how many grams of sodium hydrobe produced? $\frac{25g}{1} \frac{CO_2}{44.01} \times \frac{1 \text{ mole } CO_2}{44.01g} \times \frac{1 \text{ mole } NaOH}{1 \text{ mole } CO_2} \times \frac{40g}{1 \text{ mole } NaOH} = 22.72$ c) If 50 grams of sodium hydroxide are actually produced, what was my percent yield?		
(actual yield) x 100% = Percent Yield (22.72g) x 100% = 220.07%	* This is the answer; however, it	
7. Calcium carbonate decomposes at high temperatures to form carbon dioxide and calcium oxide:	reasonable.	ŀ
a) Write the balanced chemical equation for this reaction below.	If you would even get an answer like	
$CaCO_3 \rightarrow CO_2 + CaO$	this, you would	1
b) How many grams of calcium carbonate will I need to form 3.45 liters of carbon dioxide?	Know something Went Very,	Ĵ
3.45 L CO2 x 1 mol CO2 x 1 mol CaCO3 x 100.09 g CaCO3 = 15.42 g CaCO	Very Wrong,	
1 22,46 CO2 Ind CO2 Imol Caco2 13.72 9 Caco	13	

8. Using the following equation:

2 NaOH +
$$H_2SO_4 \rightarrow 2 H_2O + Na_2SO_4$$

How many grams of sodium sulfate will be formed if you start with 200 grams of sodium hydroxide and you have an excess of sulfuric acid?

9. Chlorine is used by textile manufacturers to bleach cloth. Excess chlorine is destroyed by its reaction with sodium thiosulfate, Na₂S₂O₃:

$$Na_2S_2O_{3(aq)} + 4Cl_{2(g)} + 5H_2O_{(aq)} \rightarrow 2NaHSO_{4(aq)} + 8HCl_{(aq)}$$

How many moles of Na₂S₂O₃) are needed to react with 0.12mol of Cl₂?

How many moles of HCl can form from 0.12mol of Cl₂?

How many moles of H₂O are required for the reaction of 0.12mol of Cl₂?

$$O.12 \text{ mols } CO_2 \times \frac{5 \text{ mols } H_2O}{4 \text{ mols } CO_2} = 0,15 \text{ mols } H_2O$$

How many moles of H_2O react if 0.24 mol HCl is formed?

$$\frac{0.24 \text{ mds HCl}}{1} \times \frac{5 \text{ mols H2O}}{8 \text{ mols HCl}} = 0.15 \text{ mols H2O}$$
10. The incandescent white of a fireworks display is caused by the reaction of phosphorous with O₂ to give P₄O₁₀.

- - Write the balanced chemical equation for the reaction.

How many grams of O2 are needed to combine with 6.85g of P?

How many grams of P₄O₁₀ can be made from 8.00g of O₂?

$$\frac{8.00g\,O_2}{32\,g\,O_2} \times \frac{1\,\text{mole}\,O_2}{32\,g\,O_2} \times \frac{1\,\text{mole}\,P_4O_{10}}{5\,\text{moles}\,O_2} \times \frac{283.88\,g\,P_4O_{10}}{1\,\text{mole}\,P_4O_{10}} = 14.19\,g\,P_4O_{10}$$
d. How many grams of P are needed to make 7.46g P₄O₁₀?

			· · · · · · · · · · · · · · · · · · ·
		·	